

Associate Dean for Research and Innovation MSC01 1140
1 University of New Mexico
Albuquerque, NM 87131-0001 USA
http://engineering.unm.edu/research/associate-dean-for-research.html
(505) 277-6095, edls@unm.edu

ECE 558: Charged Particle Beams and High Power Microwaves Spring 2019

TuTh 2:00-3:15 PM, ME 210 and Zoom Section (Updated 01/13/19)

Edl Schamiloglu, Distinguished Professor Room 323C ECE Building 505.277.6095 (voice) edls@unm.edu http://www.ece.unm.edu/faculty/edl/

Office Hours: By appointment.

Catalog Description: "Overview of physics of particle beams and applications at high-current and high-energy. Topics include review of collective physics, beam emittance, space-charge forces, transport at high power levels, and application to high power microwave generation."

Web Enhanced: http://learn.unm.edu (you need to be registered for the course; use your UNM NetID and password to access).

Prerequisites: ECE 557 or permission of the Instructor.

Text: J. Benford, J. Swegle, and E. Schamiloglu, *High Power Microwaves*, 3rd Ed. (CRC Press, Boca Raton, FL, 2016).

There will be a problem set biweekly (on average). Some problems will involve computer solutions and plotting, so you will need access to software with math and plotting functions, such as Matlab, Mathematica, *etc.* There will be a final project and presentation, which will be described in more detail in class. Your final grade will be based on:

Problem Sets 50 Student Presentations 50 Final Grade 100

Emphasized topics are:

- 1. Fundamental HPM concepts
- 2. Enabling technologies
- 3. Beamless systems
- 4. Relativistic magnetrons and MILOs
- 5. Cerenkov devices
- 6. Klystrons and reltrons
- 7. Vircators
- 8. Gyro-devices
- 9. Free electron lasers

Syllabus - Lecture No. and Topics*

Week #		Topic
1 01/17		
1. 01/15	1	Introduction to the Course/Background Information
2. 01/17	•	Introduction to Charged Particle Beams and High Power Microwaves
3. 01/22	2	Fundamentals – Basic EM (Chap. 4)
4. 01/24	•	Fundamentals – Periodic SWSs (Chap. 4)
5. 01/29	3	Fundamentals – Metamaterials/Cavities (Chap. 4)
6. 01/31		Fundamentals – Intense Beams (Chap. 4)
7. 02/05	4	Fundamentals – Beam/Wave Interactions (Chap. 4)
8. 02/07	_	Fundamentals – Wrap-up (Chap. 4)
9. 02/12	5	Enabling Technologies – Pulsed Power Drivers (Chap. 5)
10. 02/14	_	Enabling Technologies – Cathodes and Beams (Chap. 5)
11. 02/19	6	Enabling Technologies – Pulse Compression/Antennas/Plasma Diagnostics (Chap. 5)
12. 02/21	_	Enabling Technologies – Computational Techniques (Chap. 5)
13. 02/26	7	Cerenkov Devices (Chap. 8)
14. 02/28		Cerenkov Devices (Chap. 8)
15. 03/05	8	Beamless Systems - Introduction (Chap. 6)
16. 03/07		Beamless Systems - NLTLs (Chap. 6)
03/10- 03/17 Spring Break		
17. 03/19	9	Relativistic Magnetrons and MILOs (Chap. 7)
18. 03/21		Relativistic Magnetrons and MILOs (Chap. 7)
19. 03/26	10	Vircators (Chap. 10)
20. 03/28		Vircators (Chap. 10)
21. 04/02	11	Klystron and Reltrons (Chap. 9)
22. 04/04		Klystron and Reltrons (Chap. 9)
23. 04/09	12	Klystron and Reltrons (Chap. 9)
24. 04/11		Gyro-Devices (Chap. 11)
25. 04/16	13	Gyro-Devices (Chap. 11)
26. 04/18		Free Electron Lasers (Chap. 11)
	14	Students work on presentations and papers – no class
28. 04/25		Students work on presentations and papers – no class
	15	Student Presentations
30. 05/02		Student Presentations
		•

^{*} Subject to minor changes. Use this as a guide to read the textbook in advance.